Question: Could the Raspberry Pi Microscope be used for looking at microplastics found in ocean water?

stevie is asking a question about question
Follow this topic

by stevie | December 08, 2017 22:12 | #15340


I was recently speaking with @Bluemountainsurfer about the microscope project. He asked if we could use it to look at microplastics. I thought it could be really interesting! Anyone have ideas on whether this could work? https://publiclab.org/notes/partsandcrafts/12-02-2017/quick-build-raspberry-pi-microscope



5 Comments

@maxliboiron would know! https://civiclaboratory.nl/category/technologies/

I wonder what microns per pixel resolution is needed?

Is this a question? Click here to post it to the Questions page.

Reply to this comment...


How big are the particles? I know very little about microplastics but I found this great reference sheet: http://www.ccb.se/documents/Postkod2017/Mtg050317/Guide%20to%20Microplastic%20Identification_MERI.pdf. Most of the samples here would I think be visible at 40x magnification. In some cases, it looks like that might actually be too much.

Is this a question? Click here to post it to the Questions page.

Reply to this comment...


My (cursory) understanding from talking to @maxliboiron is that this microscope, which has a light source that passes through the sample (on the opposite side from the lens) is not as good for this kind of thing as a dissecting microscope, which would light the sample from the same side as the lens. There's a great activity page on how to do a visual analysis of a sample here: https://publiclab.org/notes/maxliboiron/07-19-2018/how-to-analyze-plastics-forensically.

Some of what I'm seeing (and what @kgradow1 points to) suggests that a relatively low magnification (but higher resolution?), is what's needed-- I am not sure about the Raspberry Pi microscope, but the Community Microscope (with the webcam) might actually be able to get close by NOT inverting the lens, and simply using it for very close-up macro photography, which was a thing we discovered it could do really nicely by accident.

I think a modified version of the Community Microscope, where we reorient the light source and provide some options for its positioning and intensity (and possibly explore how well an unmodified lens performs here) would be a great next-step for a prototyping project!

Is this a question? Click here to post it to the Questions page.

Yes-- the issue is the lighting, not the magnification. Most plastics are opaque, and the closer you zoom in, the harder it is to identify plastics from non-plastics, so a scope that has an oblique light with relatively low magnification (even x10-25) and high resolution is best from microplastics. (In a traditional lab, we use a dissecting scope rather than a compound scope). There is no lower size limits to microplastics (they go down to the nanoscale), but smaller than 1mm means that visual identification, even with a microscope, is no longer reliable as a source of identification. You'd have to use spectrometry. So, yes to the web cam community scope route as a potential step for microplastics.



Reply to this comment...


Log in to comment