Indoor air is routinely more polluted than the air of corresponding outdoor environments. This is partly because polluted outdoor air seeps inside, but the major contributors to poor indoor air quality are often the construction materials of the built environment itself, which slowly off-gas a host of volatile organic compounds.
What I want to do is start a design conversation about how to best remediate contaminated indoor atmospheres in the ongoing present while we work towards reducing the source of domestic chemical contaminants in the future. This work is taking place within Public Lab’s Where We Breathe project, which will be launched in the near future.
Background
Domestic chemical ecologies have both many toxicant sources and many toxicant sinks. I’m going to focus on formaldehyde because it is the most common and also most toxicologically understood indoor air pollutant. Formaldehyde slowly and silently off gasses from engineered woods, carpets, and permanent press clothing. Some of these silent emissions waft out open windows. Others are absorbed by human bodies or the bodies of companion species. Others still are metabolized by decorative indoor plants and the microbes that inhabit their roots. Rather than begin this conversation with the introduction of a mechanical air filter I think it would be useful to think about how the formaldehyde sinks that already exist within domestic chemical ecologies can be elaborated in order to scrub toxins from the air.
Dr. Bill Wolverton has been working on these issues for several decades and inspired much of the research to this end in North America and Asia. His research, first at NASA and later as an independent consultant, demonstrates that common houseplants bear the capacity to metabolize a broad array of indoor pollutants. Without an impeller of some sort, the shortcoming of houseplants is that their toxicant scrubbing potential is limited to air that intermingles with their leaves, roots, potting medium and microbes in their rhizosphere. Meaning that we would need to have plants in biodome-like proportions in order for our indoor air to be continually cleaned. Dr. Wolverton’s solution to this diffusion limitation is to place a fan in the base of a plant pot to pull air down across the plant and the bacteria that thrives among its root system. This simple addition, Dr. Wolverton states, can increase a plant’s remediation capacity by 100 times. His work has been commercialized and a $229 dollar Plant Air Purifier is available in the US. The makers of another phytoremediation kit, Andrea ($200), claim that their device can increases plant air scrubbing efficiency by more than 1000 times.
In 2010, Consumer Reports found that the air cleaning potential of the Andrea air filter was dramatically overstated and that the lead author of a study that was cited on their now defunct website was misrepresented as an endorsement when they actually found that Andrea “did not perform well.” Investigating where remediation starts and the hype begins will be important for the development of this kit. Although I have never handled either phyto-filtration system, the logic behind the fan placement of the Plant Air Filter at the base of the plant appears to be superior to the highly stylized Andrea, which has a rear mounted fan that only directly blows air over the above ground portion of the plant.
Phytoremediation
In the first stage of the Where We Breathe project we are focusing on the residents of manufactured homes, which often fall within the low to modest income range. For those who reside in manufactured homes, which harbor on average up to 4 times the ambient formaldehyde of conventional homes, the price points of these bio-filters is prohibitively expensive—even Plant Air Purifier’s soon to be launched $100 model is too costly for the population with whom we are working (a $40 formaldehyde test is often outside their budget). How can we make an effective remediation kit that will be more readily affordable but is also effective?
As a start, the low cost formaldehyde monitoring method that we are working with (and a note will be posted shortly!) utilizes an inexpensive aquarium pump to pull air through a reactive material. We convert the pump into a vacuum by inverting the diaphragm. Since we will likely be shipping this vacuum all over the country to do testing it's a great starting point for the design of a low cost kit.
Drawing inspiration from Dr. Wolverton's work, my idea is to 3-D print a plastic pot insert that can be placed in the bottom of whatever pot the remediator has around so that their pot can be connected to the vacuum and air can be circulated across the root system. The plastic insert would be placed in the middle of the pot and the pump tubing would escape out the drainage whole and go back to the vacuum. The design utilized hydroclture because it allows air to move more easily through the system, is easier to maintain for those without green thumbs, and would be less likely than potting soil to introduce fungi into domestic air space. In addition to the plastic pot insert we would need to have a plastic straw with a bit of green tape at the top which could indicate optimum water levels, a bit of 4/6mm aquarium airline tubing, and a hydroculture substrate like GrowStone.
Additional features needed: • A way to ensure a solid water seal at the base. • Some small props to place the pot on so the airline won’t get crimped as it exits the pot. • I’m not sure how resilient the pump is to moisture so we may need a humidity removing filter before the air goes into the pump.
Next steps: • Develop a 3D model of the insert. Print and test prototype. • Develop repository of what plant species remove what toxins most effectively.
Microbial Degradation
Thinking through this system got me thinking about a more speculative but also potentially more affordable/transportable version of bio-remediation. A study by Kim et al. in 2008 demonstrated that the root system and microbes metabolize just as much formaldehyde as does the above ground portion of the plant during the day, but at night the below-ground formaldehyde scrubbing is 11 times more effective than the above ground portions of the plants. Perhaps we could skip the plant and go straight to the microbial degradation? We could culture the bacteria off of the roots of the plants that are most efficient at metabolizing formaldehyde at night and then maintain a bacterial broth that air is percolated through. In this way the air-scrubbing medium could literally be contagious like a sourdough starter and a “mother” culture could be circulated while offshoot brews would be cultivated before passing the mother on. This kit could easily be under $10.
After making this sketch I found a study from a lab in china that executed a similar plan. They used Pseudomonas putida, a common bacteria used in soil remediation that is safe for humans, to create a bacterial filter for degrading formaldehyde. They found that a formaldehyde reduction efficiency of 90 percent could be reached when the bacteria was fed nutrients at 50 ml m−3 h−1 but could be up to 97 percent efficient at 482 ml m−3 h−1. So we could think about a nutrient drip system to add to this—I would assume we would shoot for somewhere around the 50 ml m−3 h−1 as we would achieve a higher total formaldehyde removal with a given set of nutrients. We could also add a UV light module at the top for the germophobes. ☺
Next steps: • Either purchase some pricey P. putida online or have some donated by a lab. • Or we could attempt to cultivate the bacteria that we find on the roots of the plants we find to have the most effective nocturnal formaldehyde reduction. • In an ideal world we would try both of the above to compare them. • Develop a database of the bacteria that best destroys different common indoor pollutants. Bacteria are also differently suited to metabolize toxicants at different levels (with some bacteria having multiple pathways of degradation of a single chemical based on the concentration of the chemical). With that knowledge, specific bacteria could be blended to better scrub specific pollutants and specific pollutant levels from the air.
13 Comments
What you need is lactic acid. It is a detergent and really easy to homebrew - it is naturally found in sour dairy.
You can find out more about its uses in the following links:
http://cosmeticsinfo.org/ingredient/glycolic-and-lactic-acids-and-their-salts-and-esters http://education-portal.com/academy/lesson/lactic-acid-fermentation-using-fermentation-to-make-food.html http://health.howstuffworks.com/skin-care/beauty/lactic-acid-skin-care.htm http://www.ehow.com/how_8148316_science-experiment-make-lactic-acid.html
Warning: Lactose Intolerant people should be wary about ingesting stuff if you decide to go ahead and make some.
*I also just found this: https://microbewiki.kenyon.edu/index.php/MicrobeWiki
Reply to this comment...
Log in to comment
Thanks @amysoyka! That's really interesting. Do you know if lactic acid is known to break down formaldehyde and that the outputs of that breakdown would be? I guess the benifit of a bacteria over an acid would be that a bacteria and reproduce, where as the user would have to replace the acid eventually. but replacing acid could be easier than feeding bacteria.
Following your microbe wiki link to their P. putida page and they noted that the bacteria, while certified as safe may be related to some small human pathogenesis. It would be good to look into this more as we wouldn't want to replace a chemical toxicant with a bacterial toxin, especially as many users will likely be immunologically vulnerable.
Is this a question? Click here to post it to the Questions page.
Reply to this comment...
Log in to comment
It sounds like a novel approach to breakdown formaldehyde. However, if you're in a situation whereby outdoor air is cleaner than indoor air, wouldn't the easiest solution be to ventilate in outside air?
A few formaldehyde testing methods use DI water as the capture media. Thus, if you did want to collect formaldehyde, bubbling it through water might just be the solution.
Is this a question? Click here to post it to the Questions page.
Reply to this comment...
Log in to comment
Hey David, yes, you are absolutely right. Ventilation in situations with clean outdoor air is definitely the best short-term option. It is cheap/free and easy. But there are lots of climate reasons why people can't ventilate with a cracked window or open door (like cold winters up north or hot summers down south) and temperature retaining air exchange is pretty pricey. To make matters worse, this paper: http://www.ncbi.nlm.nih.gov/pubmed/20408902 , if i'm reading it right, states that ventilation as a technique of domestic formaldehyde mitigation looses efficacy over time. So when it appeared that ventilation only worked when there was no outdoor pollution, during certain seasons, and for a short period of time, then I started to think about remediation.
The water capture sounds really interesting! Do you have any links to those testing methods? I think formaldehyde is hydrophilic, but I don't know the rate of dissolving. It would be great to test the efficacy of a DI water bubbler and also figure out how often one would have to change the water for it to work well. That's a great lead!
Is this a question? Click here to post it to the Questions page.
Reply to this comment...
Log in to comment
Here's one of the EPA source sampling methods: select method 316 in the pick list here for the purified DI water capture method: http://www.epa.gov/ttn/emc/
Then also, I found this reference to "bubbler techniques" which a lot of modern sampling techniques stopped using bubblers (impingers) because they were just to messy and prone to spilling. Now people prefer to use coated media contained in a tube.
http://books.google.com/books?id=W0QrAAAAYAAJ&pg=PA137&lpg=PA137&dq=formaldehyde+bubbler&source=bl&ots=-jxuruX9O5&sig=rOB-WLqYU_Zz9eKgE3dULIbBRQM&hl=en&sa=X&ei=XcdGVNeSGs3bsATY84I4&ved=0CCwQ6AEwAg#v=onepage&q=formaldehyde%20bubbler&f=false
Is this a question? Click here to post it to the Questions page.
Reply to this comment...
Log in to comment
Thanks, David! This is really helpful!
Reply to this comment...
Log in to comment
This is especially exciting to me because formaldehyde remediation also dovetails with the ability to detect formaldehyde, in that if we develop a cheap method to do so, we can better frame (and answer!) questions about how well remediation works.
Reply to this comment...
Log in to comment
@nshapiro
Sorry for taking so long to write a reply.
I realized that what I replied with initially wasn't what you were asking.
Lactic Acid is what they now replace Formaldehyde with in eco-friendly detergents. I somehow read you were wanting something better than Formaldehyde in that chunk of text, when really all you were asking was for the bacteria that produce such things.
Lactic acid is produced by Lactobacillus.
You should look for a homebrew group in your area on Facebook or something, and ask if anyone has some SCOBY.
http://en.m.wikipedia.org/wiki/SCOBY
It stands for Symbiotic Colony of Bacteria and Yeast. There are a.number of varieties, each with a different outcome in food production, but could be relevant to this. In particular, I noticed that ginger beer is brewed from a SCOBY, aptly called a Ginger Beer Plant (made from a sub type of Lactobacillus - the hilgardii variety & Saccharomyces florentinus - as yeast causes your strawberries to go bad.).
I am now imagining ginger roots & ginger beer as a write this. Mmm...ginger beer...
Reply to this comment...
Log in to comment
Wow! I love where you are headed with this Nick!
It would be very cool if Lactobacilli or bacteria found in commonly fermented products also broke down formaldehyde because it would be really easy to find it for low cost/DIY projects.
I used to ferment EM bacteria for bokashi and have a ton left over that I use as soil amendment, air freshener and something to spray in stinky shoes. I wonder how well it would work at breaking down formaldehyde when misted in the air...
Reply to this comment...
Log in to comment
whoa, melissa -- bacterial stinky shoe treatments? I have a pair of dearly beloved vegan leather boots which could use some; they don't do well in the rain. Does it work well? Where can I find EM bacteria?
Is this a question? Click here to post it to the Questions page.
Reply to this comment...
Log in to comment
For shoes, there I found no miracles with EM. I wear minimal shoes with no socks for running, and they get REALLY stinky fast. A dusting of plain old baking soda once a week if i am wearing them every day works wonders on those shoes. The spray does work great on perma-BO of shirts and sweaters as a pre-wash treatment, and has de-smelled my boyfriends car successfully.
EM is a proprietary blend of bacteria and yeasts that have been marketed for organic farming and its harder to find. You could also try diluted unpasteurized pickle or kraut juice maybe if you were feeling like experimenting and your shoes couldnt smell any worse. You could also try fermenting a probiotic pill in sugar water (I have done this successfully, but threw it away because, warning, fermenting in a spray device is not smart and messy because the pressure causes liquid to leak out of the nozzle). Make sure whatever you are spraying is very dilute or things will become sticky.
If you remind me I will bring some EM mother culture to the barnraising if you still want it.
An honest warning though: EM culture smells like delicious molasses to me, however other people ensure me that when undiluted and freshly fermented it smells like flammable baby barf. If you dilute it it wont smell strongly, an once dry, there is no smell...
Reply to this comment...
Log in to comment
Wow, some real bold testing going on here. I'm just careful to keep my boots dry, and there's no big problem, but that kind of limits the utility of my boots. I'd be interested to see the EM culture if it's not hard to bring it. I'll trade you for sourdough? I wonder if sourdough starter could outcompete shoe cultures.
This is wandering a bit afield of the original topic. Sorry! We can have a bacterial session at the Barnraising.
Is this a question? Click here to post it to the Questions page.
Reply to this comment...
Log in to comment
This is awesome. I actually found this website because I recently moved into an apartment with new paint and new carpet, and the off gassing is intolerable. The smell has dissipated, but I can only assume that VOC's are still being released because my lungs hurt when ever I am there. I actually started thinking about bacteria to 'purify' the air because I wanted to make some sauerkraut. But I figured the kraut would would probably interact with what ever is in the air, and that it probably wouldn't be good to eat. I have been desperately searching for solutions, and I am pretty sure I will get no support from my landlords unless I had some sort of proof that my space is a toxic soup. Testing is expensive. So far I have acquired 11 house plants...which must not be enough. And I have been cutting up onions and setting out vinegar ( common suggestions from google). There has got to be a way to address this problem. Melissa, you said you used the EM to freshen the air?
Is this a question? Click here to post it to the Questions page.
Reply to this comment...
Log in to comment
Login to comment.