Public Lab Wiki documentation



Monitoring Bee Behavior with a Raspberry Pi

This is a revision from October 03, 2020 03:16. View all revisions
1 | 23 | | #24654

Hi Everyone, for my undergraduate thesis, I am conducting research on an understudied species, the eastern carpenter bee, Xylocopa virginica. Here, I will be using a Raspberry Pi to both operate data collection devices and to store collected data. Transducers and a camera will be placed outside of an eastern carpenter bee nesting gallery, and vibroacoustic and circadian activity pattern data will be collected.

Location

This work will be conducted in western Massachusetts, most likely in Amherst, Massachusetts. The study will occur in either a highly disturbed or relatively undisturbed site, where eastern carpenter bees are constructing galleries.

Goals and Motivations

This work will contribute to the body of knowledge on an understudied large carpenter bee species, by describing species typical sound production and activity patterns. I also intend to demonstrate ease of designing and building one's own data collection instrument, which is a much cheaper alternative to purchasing expensive scientific equipment. By combining hardware with open source software, researchers are able to build custom instruments without dedicating large portions of their funding to buying expensive instruments.

People who are involved

I am a student in the Open Science Instrumentation and Data Collection thesis seminar at UMass Amherst.

What are we working on now:

I am currently reviewing the literature on eastern carpenter bees and on Raspberry Pi machine learning. I am also working on a budget proposal to fund this research.

Updates

Subscribe to updates on this project

Update # 1: I am submitting my research proposal in just a few days time. A complete (but subject to change) list of hardware for this project is available in the activities section. Each of my finalized data collection instruments are expected to cost around $300.00. If I were operating the instrument with a main power supply instead of a field work friendly solar charging system (solar panel + PiJuice HAT + battery), then the finalized instrument would cost about $130 for hardware.

Questions

Title Author Updated Likes Comments
Nothing yet on the topic "CarpenterBees" -- be the first to post something!


Activities we’ve done in our project

Purpose Category Status Author Time Difficulty Replications
Nothing yet on the topic "t\CarpenterBees" -- be the first to post something!

Activities should include a materials list, costs and a step-by-step guide to construction with photos. Learn what makes a good activity here.

Materials List (subject to change):

-Transducer; -Audio Injector Sound Zero Board; -Plastic Enclosure; -PiJuice HAT Portable Power Supply (UPS); -PiJuice 5000mAh Battery; -Raspberry Pi Zero Wireless WH (Pre-Soldered Header); -MicroSD Card -16 GB - Class 10 - BLANK; -Official Raspberry Pi Zero Case + Mini Camera Cable; -Micro-USB Power Supply - 5.1V 2.5A, UL Listed; -Ethernet Hub and USB Hub w/ Micro USB OTG Connector; -Aluminum Heatsink for Raspberry Pi Zero; -PiJuice Solar Panel - 12 Watt; -Hosa CPR-202 Dual 1/4" TS to Dual RCA Stereo Interconnect Cable, 2 Meters

Data

__