Particulate matter (PM) is airborne particles and droplets, that can be inhaled. Some PM is forme...
Public Lab is an open community which collaboratively develops accessible, open source, Do-It-Yourself technologies for investigating local environmental health and justice issues.
90 | mathew |
January 16, 2016 05:10
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. As a regulated pollutant PM is shorthand for respirable particulate matter, or particulate matter that can get stuck in the lungs. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Particles in the AirAll airborne particles share a feature in common-- they are small enough to remain suspended in the air and settle out slowly. For a particle to become suspended in the air it must be small, usually smaller than 25-50 microns in diameter (millionths of a meter, μm). For comparison, a human hair is 70μm in diameter, and a grain of sand 50μm, while the majority of airborne particles are closer to 10μm. Airborne particles interact with each other and take roughly three forms: Particles may be one solid particle, a droplet (or aerosol) of liquid, or an agglomerate particle made up of a variety of weakly bonded particles or droplets. Droplets and agglomerate particles are unstable. As the temperature, pressure, and humidity of surrounding air changes, droplets and agglomerate particles may fall apart or join together. Airborne particles' sizes cluster into two rough size ranges, fine and coarse. The forces that hold particles together and create agglomerate particles push them into size ranges. Many fine particles are droplets and agglomerates in transition states from liquid to gas. Particulate Matter in the LungsParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the upper lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. These removable particles are inspirable. Particles small enough to get beyond the lung's branching channels of bronchioles may get stuck. Air is exchanged with the circulatory system below the bronchioles in the process of respiration. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and regulators setting regulations are particularly concerned with respirable PM. Measured Categories of Respirable Particulate MatterNuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. PM10Respirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. PM2.5Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. UltrafinesFine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
89 | mathew |
January 16, 2016 05:08
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. As a regulated pollutant PM is shorthand for respirable particulate matter, or particulate matter that can get stuck in the lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Particles in the AirAll airborne particles share a feature in common-- they are small enough to remain suspended in the air and settle out slowly. For a particle to become suspended in the air it must be small, usually smaller than 25-50 microns in diameter (millionths of a meter, μm). For comparison, a human hair is 70μm in diameter, and a grain of sand 50μm, while the majority of airborne particles are closer to 10μm. Airborne particles interact with each other and take roughly three forms: Particles may be one solid particle, a droplet (or aerosol) of liquid, or an agglomerate particle made up of a variety of weakly bonded particles or particles and droplets. Droplets and agglomerate particles are unstable. As the temperature, pressure, and humidity of surrounding air changes, droplets and agglomerate particles may fall apart or join together. Airborne particles' sizes cluster into two rough size ranges, fine and coarse. The forces that hold particles together and create agglomerate particles push them into size ranges. Many fine particles are droplets and agglomerates in transition states from liquid to gas. Particulate Matter in the LungsParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the upper lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. These removable particles are inspirable. Particles small enough to get beyond the lung's branching channels of bronchioles may get stuck. Air is exchanged with the circulatory system below the bronchioles in the process of respiration. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and regulators setting regulations are particularly concerned with respirable PM. Measured Categories of Respirable Particulate MatterNuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. PM10Respirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. PM2.5Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. UltrafinesFine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
88 | mathew |
January 16, 2016 05:08
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. As a [regulated pollutant PM((/wiki/pm#Measured+Categories+of+Respirable+Particulate+Matter) is shorthand for respirable particulate matter, or particulate matter that can get stuck in the lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Particles in the AirAll airborne particles share a feature in common-- they are small enough to remain suspended in the air and settle out slowly. For a particle to become suspended in the air it must be small, usually smaller than 25-50 microns in diameter (millionths of a meter, μm). For comparison, a human hair is 70μm in diameter, and a grain of sand 50μm, while the majority of airborne particles are closer to 10μm. Airborne particles interact with each other and take roughly three forms: Particles may be one solid particle, a droplet (or aerosol) of liquid, or an agglomerate particle made up of a variety of weakly bonded particles or particles and droplets. Droplets and agglomerate particles are unstable. As the temperature, pressure, and humidity of surrounding air changes, droplets and agglomerate particles may fall apart or join together. Airborne particles' sizes cluster into two rough size ranges, fine and coarse. The forces that hold particles together and create agglomerate particles push them into size ranges. Many fine particles are droplets and agglomerates in transition states from liquid to gas. Particulate Matter in the LungsParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the upper lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. These removable particles are inspirable. Particles small enough to get beyond the lung's branching channels of bronchioles may get stuck. Air is exchanged with the circulatory system below the bronchioles in the process of respiration. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and regulators setting regulations are particularly concerned with respirable PM. Measured Categories of Respirable Particulate MatterNuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. PM10Respirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. PM2.5Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. UltrafinesFine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
87 | mathew |
January 16, 2016 05:04
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. As a regulated pollutant PM is shorthand for [particulate matter in the lungs](/wiki/pm#, or respirable particulate matter. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Particles in the AirAll airborne particles share a feature in common-- they are small enough to remain suspended in the air and settle out slowly. For a particle to become suspended in the air it must be small, usually smaller than 25-50 microns in diameter (millionths of a meter, μm). For comparison, a human hair is 70μm in diameter, and a grain of sand 50μm, while the majority of airborne particles are closer to 10μm. Airborne particles interact with each other and take roughly three forms: Particles may be one solid particle, a droplet (or aerosol) of liquid, or an agglomerate particle made up of a variety of weakly bonded particles or particles and droplets. Droplets and agglomerate particles are unstable. As the temperature, pressure, and humidity of surrounding air changes, droplets and agglomerate particles may fall apart or join together. Airborne particles' sizes cluster into two rough size ranges, fine and coarse. The forces that hold particles together and create agglomerate particles push them into size ranges. Many fine particles are droplets and agglomerates in transition states from liquid to gas. Particulate Matter in the LungsParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the upper lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. These removable particles are inspirable. Particles small enough to get beyond the lung's branching channels of bronchioles may get stuck. Air is exchanged with the circulatory system below the bronchioles in the process of respiration. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and regulators setting regulations are particularly concerned with respirable PM. Measured Categories of Respirable Particulate MatterNuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. PM10Respirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. PM2.5Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. UltrafinesFine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
86 | mathew |
January 16, 2016 04:53
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Particles in the AirAll airborne particles share a feature in common-- they are small enough to remain suspended in the air and settle out slowly. For a particle to become suspended in the air it must be small, usually smaller than 25-50 microns in diameter (millionths of a meter, μm). For comparison, a human hair is 70μm in diameter, and a grain of sand 50μm, while the majority of airborne particles are closer to 10μm. Airborne particles interact with each other and take roughly three forms: Particles may be one solid particle, a droplet (or aerosol) of liquid, or an agglomerate particle made up of a variety of weakly bonded particles or particles and droplets. Droplets and agglomerate particles are unstable. As the temperature, pressure, and humidity of surrounding air changes, droplets and agglomerate particles may fall apart or join together. Airborne particles' sizes cluster into two rough size ranges, fine and coarse. The forces that hold particles together and create agglomerate particles push them into size ranges. Many fine particles are droplets and agglomerates in transition states from liquid to gas. Particulate Matter in the LungsParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the upper lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. Particles small enough to get beyond the lung's branching channels of bronchioles may get stuck. Air is exchanged with the circulatory system below the bronchioles in the process of respiration. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and regulators setting regulations are particularly concerned with respirable PM. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
85 | mathew |
January 16, 2016 04:26
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Particles in the AirAll airborne particles share a feature in common-- they are small enough to remain suspended in the air and settle out slowly. For a particle to become suspended in the air it must be small, usually smaller than 25-50 microns in diameter (millionths of a meter, μm). For comparison, a human hair is 70μm in diameter, and a grain of sand 50μm, while the majority of airborne particles are closer to 10μm. Airborne particles interact with each other and take roughly three forms: Particles may be one solid particle, a droplet (or aerosol) of liquid, or an agglomerate particle made up of a variety of weakly bonded particles or particles and droplets. Droplets and agglomerate particles are unstable. As the temperature, pressure, and humidity of surrounding air changes, droplets and agglomerate particles may fall apart or join together. Airborne particles' sizes cluster into two rough size ranges, fine and coarse. The forces that hold particles together and create agglomerate particles push them into size ranges. Many fine particles are droplets and agglomerates in transition states from liquid to gas. Particulate Matter in the LungsParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the upper lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. Particles small enough to get beyond the lung's branching channels of bronchioles may get stuck. Air is exchanged with the circulatory system below the bronchioles in the process of respiration. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and regulators setting regulations are particularly concerned with respirable PM. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
84 | mathew |
January 16, 2016 03:08
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Particles in the AirAll airborne particles share a feature in common-- they are small enough to remain suspended in the air and settle out slowly. For a particle to become suspended in the air it must be small, usually smaller than about 50 microns (millionths of a meter, μm). For comparison, a human hair is 70μm in diameter, and a grain of sand 50μm, while the majority of airborne particles are closer to 10μm. Airborne particles interact with each other and take roughly three forms: Particles may be one solid particle, a droplet (or aerosol) of liquid, or an agglomerate particle made up of a variety of weakly bonded particles or particles and droplets. Droplets and agglomerate particles are unstable. As the temperature, pressure, and humidity of surrounding air changes, droplets may become gasses and agglomerate particles may fall apart or join together. There are uneven amounts of differently-sized particles in the air. The forces that hold particles together and create agglomerate particles push particles into two rough size ranges, fine and coarse, with some overlap in the middle. Particulate Matter in the LungsParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. Particles small enough to get beyond the lung's branching channels of bronchioles get stuck. Air is exchanged with the circulatory system below the bronchioles in the process of respiration, and so this particulate matter respirable. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and regulators setting regulations are particularly concerned with respirable particulate matter. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
83 | mathew |
January 16, 2016 01:04
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Particles in the AirAll airborne particles share a feature in common-- they are small enough to remain suspended in the air and settle out slowly. For a particle to become suspended in the air it must be small, usually smaller than about 50 microns (millionths of a meter, μm). For comparison, a human hair is 70μm in diameter, and a grain of sand 50μm, while the majority of airborne particles are closer to 10μm. Airborne particles interact with each other and take roughly three forms: Particles may be one solid particle, a droplet (or aerosol) of liquid, or an agglomerate particle made up of a variety of weakly bonded particles or particles and droplets. Droplets and agglomerate particles are unstable. As the temperature, pressure, and humidity of surrounding air changes, droplets may become gasses and agglomerate particles may fall apart or join together. There are uneven amounts of differently-sized particles in the air. The forces that hold particles together and create agglomerate particles push particles into two rough size ranges, fine and coarse, with some overlap in the middle. Particulate Matter in the LungsParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. Particles small enough to get beyond the lung's branching channels of bronchioles get stuck. Air is exchanged with the circulatory system below the bronchioles in the process of respiration, and so this particulate matter respirable. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and regulators setting regulations are particularly concerned with respirable particulate matter. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
82 | mathew |
January 16, 2016 01:03
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Particles in the AirAll airborne particles share a feature in common-- they are small enough to remain suspended in the air and settle out slowly. For a particle to become suspended in the air it must be small, usually smaller than about 50 microns (millionths of a meter, μm). For comparison, a human hair is 70μm in diameter, and a grain of sand 50μm, while the majority of airborne particles are closer to 10μm. Airborne particles interact with each other and take roughly three forms: Particles may be one solid particle, a droplet (or aerosol) of liquid, or an agglomerate particle made up of a variety of weakly bonded particles or particles and droplets. Droplets and agglomerate particles are unstable. As the temperature, pressure, and humidity of surrounding air changes, droplets may become gasses and agglomerate particles may fall apart or join together. There are uneven amounts of differently-sized particles in the air. The forces that hold particles together and create agglomerate particles push particles into two rough size ranges, fine and coarse, with some overlap in the middle. Particulate Matter in the LungsParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. Particles small enough to get beyond the lung's branching channels of bronchioles get stuck. Air is exchanged with the circulatory system below the bronchioles in the process of respiration, and so this particulate matter respirable. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and regulators setting regulations are particularly concerned with respirable particulate matter. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
81 | mathew |
January 15, 2016 23:04
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Particles in the AirAll airborne particles share a feature in common-- they are small enough to remain suspended in the air and settle out slowly. For a particle to become suspended in the air it must be small, usually smaller than about 50 microns (millionths of a meter, μm). Airborne particles interact with each other and take roughly three forms: Particles may be one solid particle, a droplet (or aerosol) of liquid, or an agglomerate particle made up of a variety of weakly bonded particles or particles and droplets. Droplets and agglomerate particles are unstable. As the temperature, pressure, and humidity of surrounding air changes, droplets may become gasses and agglomerate particles may fall apart or join together. There are uneven amounts of differently-sized particles in the air. The forces that hold particles together and create agglomerate particles push particles into two rough size ranges, fine and coarse, with some overlap in the middle. For comparison, a human hair is 70μm in diameter, and a grain of sand 50μm, while the majority of airborne particles are closer to 10μm. Particulate Matter in the LungsParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. Particles small enough to get beyond the lung's branching channels of bronchioles get stuck. Past the bronchioles is where the exchange of air and blood (or respiration) happens, and so we call small particulate matter respirable. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and regulators setting regulations are particularly concerned with respirable particulate matter. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
80 | mathew |
January 15, 2016 22:59
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Particles in the AirAll airborne particles share a feature in common-- they are small enough to remain suspended in the air and settle out slowly. For a particle to become suspended in the air it must be small, usually smaller than about 50 microns (millionths of a meter, μm). Airborne particles interact with each other and take roughly three forms: Particles may be one solid particle, a droplet (or aerosol) of liquid, or an agglomerate particle made up of a variety of weakly bonded particles or particles and droplets. Droplets and agglomerate particles are unstable. As the temperature, pressure, and humidity of surrounding air changes, droplets may become gasses and agglomerate particles may fall apart or join together. There are uneven amounts of differently-sized particles in the air. The forces that hold particles together and create agglomerate particles push particles into two rough size ranges, fine and coarse, with some overlap in the middle. For comparison, a human hair is 70μm in diameter, and a grain of sand 50μm, while the majority of airborne particles are closer to 10μm. Particulate Matter in the LungsParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. Particles small enough to get beyond the lung's branching channels of bronchioles get stuck. Past the bronchioles is where respiration happens, the exchange of air and blood, and so we call small particulate matter respirable. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and setting regulations are particularly concerned with respirable PM. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
79 | mathew |
January 15, 2016 22:56
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Particles in the AirAll airborne particles share a feature in common-- they are small enough to remain suspended in the air and settle out slowly. For a particle to become suspended in the air it must be small, usually smaller than about 50 microns (millionths of a meter, μm). Airborne particles interact with each other and take roughly three forms: Particles may be one solid particle, a droplet (or aerosol) of liquid, or an agglomerate particle made up of a variety of weakly bonded particles or particles and droplets. Droplets and agglomerate particles are unstable. As the temperature, pressure, and humidity of surrounding air changes, droplets may become gasses and agglomerate particles may fall apart or join together. There are uneven amounts of differently-sized particles in the air. The forces that hold particles together and create agglomerate particles push particles into two rough size ranges, fine and coarse, with some overlap in the middle. For comparison, a human hair is 70μm in diameter, and a grain of sand 50μm, while the majority of airborne particles are closer to 10μm. Particulate Matter in the LungsParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. Particles small enough to get beyond the lung's branching channels of bronchioles get stuck. Past the bronchioles is where respiration happens, the exchange of air and blood, and so we call small particulate matter respirable. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and setting regulations are particularly concerned with respirable PM. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
78 | mathew |
January 15, 2016 22:55
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Particles in the AirAll airborne particles share a feature in common-- they are small enough to remain suspended in the air and settle out slowly. For a particle to become suspended in the air it must be small, usually smaller than about 50 microns (millionths of a meter, μm). Airborne particles interact with each other and take roughly three forms: Particles may be one solid particle, a droplet (or aerosol) of liquid, or an agglomerate particle made up of a variety of weakly bonded particles or particles and droplets. Droplets and agglomerate particles are unstable. As the temperature, pressure, and humidity of surrounding air changes, droplets may become gasses and agglomerate particles may fall apart or join together. There are uneven amounts of differently-sized particles in the air. The forces that hold particles together and create agglomerate particles push particles into two rough size ranges, fine and coarse, with some overlap in the middle. For comparison, a human hair is 70μm in diameter, and a grain of sand 50μm, while the majority of airborne particles are closer to 10μm. Particulate Matter in the LungsParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. Particles small enough to get beyond the lung's branching channels of bronchioles get stuck. Past the bronchioles is where respiration happens, the exchange of air and blood, and so we call small particulate matter respirable. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and setting regulations are particularly concerned with respirable PM. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
77 | mathew |
January 15, 2016 20:19
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Breathing Particulate MatterParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. Particles small enough to get beyond the lung's branching channels of bronchioles get stuck. Past the bronchioles is where respiration happens, the exchange of air and blood, and so we call small particulate matter respirable. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and setting regulations are particularly concerned with respirable particulate matter. Particle SizeWhile particles' health effects vary depending on what they're made of, small particles share hazards in common. Size is therefore a frequent method of differentiating particulate matter. Particles are measured in microns (short for micrometers, or millionths of a meter, μm), but when talking about particle sizes we use shorthand for size ranges. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
76 | mathew |
January 15, 2016 20:18
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Breathing Particulate MatterParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. Particles small enough to get beyond the lung's branching channels of bronchioles get stuck. Past the bronchioles is where respiration happens, the exchange of air and blood, and so we call small particulate matter respirable. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and setting regulations are particularly concerned with respirable PM. Particle SizeWhile particles' health effects vary depending on what they're made of, small particles share hazards in common. Size is therefore a frequent method of differentiating particulate matter. Particles are measured in microns (short for micrometers, or millionths of a meter, μm), but when talking about particle sizes we use shorthand for size ranges. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
75 | mathew |
January 15, 2016 20:17
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. (chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Breathing Particulate MatterParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. Particles small enough to get beyond the lung's branching channels of bronchioles get stuck. Past the bronchioles is where respiration happens, the exchange of air and blood, and so we call small particulate matter respirable. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and setting regulations are particularly concerned with respirable PM. Particle SizeWhile particles' health effects vary depending on what they're made of, small particles share hazards in common. Size is therefore a frequent method of differentiating particulate matter. Particles are measured in microns (short for micrometers, or millionths of a meter, μm), but when talking about particle sizes we use shorthand for size ranges. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
74 | mathew |
January 15, 2016 20:16
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Breathing Particulate MatterParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. Particles small enough to get beyond the lung's branching channels of bronchioles get stuck. Past the bronchioles is where respiration happens, the exchange of air and blood, and so we call small particulate matter respirable. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and setting regulations are particularly concerned with respirable PM. Particle SizeWhile particles' health effects vary depending on what they're made of, small particles share hazards in common. Size is therefore a frequent method of differentiating particulate matter. Particles are measured in microns (short for micrometers, or millionths of a meter, μm), but when talking about particle sizes we use shorthand for size ranges. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
73 | mathew |
January 15, 2016 20:16
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that has settled onto surfaces and into lungs. Particulate matter can come from solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust such as wind erosion, volcanoes, pollen, and forest fires have been overtaken by human-generated particles from roads, agriculture, construction, and mining. chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. Breathing Particulate MatterParticulate matter lodged in the lungs is called respirable. Particles get stuck because of their size, shape, and density, but size is the most important factor. As particles move from the nose and throat into the lungs, larger particles get stuck on hairs and mucus and are removed by natural processes like coughing and sneezing. Particles small enough to get beyond the lung's branching channels of bronchioles get stuck. Past the bronchioles is where respiration happens, the exchange of air and blood, and so we call small particulate matter respirable. Deep in the lungs, respirable particulate matter can interfere with body's exchange of air and potentially enter the bloodstream. For these reasons, researchers monitoring for particles and setting regulations are particularly concerned with respirable PM. Particle SizeWhile particles' health effects vary depending on what they're made of, small particles share hazards in common. Size is therefore a frequent method of differentiating particulate matter. Particles are measured in microns (short for micrometers, or millionths of a meter, μm), but when talking about particle sizes we use shorthand for size ranges. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
72 | mathew |
January 14, 2016 20:41
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that is small enough to be suspended in the air. Particulate Matter can be solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust have been overtaken by human-generated particles from roads, agriculture, construction, and mining which now overshadow wind erosion, volcanoes, pollen, and forest fires as sources of particle pollution. chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. There are four attributes of airborne particles that characterize their dangers: particle size, particle concentration, particle type, and particle source, discussed below. Particle SizeWhile particles' health effects vary depending on what they're made of, small particles share hazards in common. Size is therefore a frequent method of differentiating particulate matter. Particles are measured in microns (short for micrometers, or millionths of a meter, μm), but when talking about particle sizes we use shorthand for size ranges. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert | |
71 | mathew |
January 14, 2016 20:40
| almost 9 years ago
Particulate Matter (PM) is airborne dust and particle pollution that is small enough to be suspended in the air. Particulate Matter can be solid particles, liquid droplets, or conglomerations of particles and liquids. Based on size alone, small airborne particles can become lodged in the lungs or even enter the bloodstream. Some non-toxic materials, such as silica, can be carcinogenic at small size. While historically most dust was naturally occurring, since industrialization natural sources of dust have been overtaken by human-generated particles from roads, agriculture, construction, and mining which now overshadow wind erosion, volcanoes, pollen, and forest fires as sources of particle pollution. chart, citation: EPA/600/R-95/115). Monitoring sources of particle pollution and [advocating for their reduction] (/Advocacy) can have positive public health impacts. According to the CDC, a 10% reduction in fine particles could prevent 13,000 deaths annually in the US. There are four attributes of airborne particles that characterize their dangerousness: particle size, particle concentration, particle type, and particle source, discussed below. Particle SizeWhile particles' health effects vary depending on what they're made of, small particles share hazards in common. Size is therefore a frequent method of differentiating particulate matter. Particles are measured in microns (short for micrometers, or millionths of a meter, μm), but when talking about particle sizes we use shorthand for size ranges. Non-respirable PM & Nuisance Dust50-25μm in diameter is roughly the maximum size for particles suspended in air, and anything this size or smaller is considered PM. Particles this size are often classified as ’nuisance dust,' and are not considered 'respirable.' They can exacerbate respiratory distress but are too large to become lodged in healthy lungs, with a few notable exceptions such as sharp asbestos fibers. Respirable PMRespirable particulate matter refers to particles that can become lodged in healthy lungs. This size varies from particle to particle. For example, while 10μm is generally considered respirable, silica is considered respirable below 4μm in diameter. Coarse PM: Course particulate matter refers to the largest fraction of respirable particles. In regulatory monitoring it can refer to either particles nominally 10μm in diameter (designated PM10 by the EPA), or the fraction of dust between 2.5μm and 10μm in diameter (designated PM10-2.5). My weight, coarse PM is is the majority of respirable particle pollution people inhale. Fine PM: Fine Particles Ultrafine PM: Nanoparticles: As particles get smaller their behavior can become strange when compared to the expected behavior of objects visible with the naked eye. For example, Intermolecular forces dominate among fine particulate matter can lead to charged particles, allowing the selective collection or rejection of particular types of particles based on the material or static charge of the collector. The peculiar behavior of small particles means that particles are not evenly distributed by size. Read more in PM monitoring regulations. read about capturing and measuring particulate matter in PM Monitoring Particle ConcentrationParticle concentration is the density of particles in the air. This is usually expressed as mass per volume, i.e. micrograms or milligrams per cubic meter, expressed μg/m3 or mg/m3. Read more on identifying particle concentration Data Collection & Monitoring. Particle TypeThis can be conducted with a microscope for crystals, and using lab techniques for other types of particles. Mass spectrometry and x-ray spectrometry may also be used. Particle SourceUsually directional and time-stamped data from multiple points are needed to extrapolate source, along with an understanding of particle type. Researchers speak of two types of emissions that have a blurry line between them, 'process stream' emissions and 'fugitive emissions.' Process stream emissions are inherent to a process, like ash from a fire, and fugitive emissions are ancillary, like the dust kicked up bringing wood to a fire [EPA 3-2]. Read More in PM Monitoring Regulations |
Revert |