##Where We Breathe 2014-Present Where We Breathe is a project of Public Lab's Open Air Initiative focused on domestic formaldehyde monitoring and mitigation. WWB is composed of four interconnected aspects: **An online platform: ** where community members can pair test results to the symptoms they register in an etymologically validated survey, share stories about the impact of air pollution in their communities, and find support and resources for advocacy. **A lending library:** which will foster for maximum use of test kits at a minimum price and allow for our DIY devices to make inroads into the marginalized populations that need them most. **A DIY test kit:** conveyed by the lending library, bought in the Public Lab store or made on your own, will detect formaldehyde down to 5ppb and yields results in a thermometer like readout after a 30 minute sample (ie. no need to send samples to the lab). **A DIY remediation kit:** also conveyed by the lending library, bought in the Public Lab store or made on your own, will help reduce the atmospheric load of formaldehyde in your home by circulating air though the root system of plants know to for their formaldehyde remediation capacity. This simple enhancement could increase the plant's ability to scrub the air of formaldehyde by as much as 100 times. WhereWeBreathe was developed address non-place based environmental justice issues that revolve around toxic exposures emanating from distributed infrastructure (e.g. manufactured housing, Lumber Liquidators flooring, natural gas compressor stations). To this end it re-imagines epidemiological research tools around community needs. It re-frames epidemiological surveys as a forum for community peer-support and knowledge building. Rather than treat participants as research subjects, this project creates a safe and anonymous-by-default space to share stories, symptoms, and resources, while re-imagining the alliance between affected communities and researchers. View or contribute to the code on GitHub: https://github.com/publiclab/wherewebreathe **Wireframes for IAQ website created by Jeff Warren:** [![WWB_Dash.png](https://i.publiclab.org/system/images/photos/000/009/295/medium/WWB_Dash.png)](https://i.publiclab.org/system/images/photos/000/009/295/original/WWB_Dash.png) **DIY formaldehyde test kit:** See the research note [here](http://publiclab.org/notes/nshapiro/11-03-2014/diy-formaldehyde-test-kit) [![Flow_meter_close_up.jpg](https://i.publiclab.org/system/images/photos/000/009/296/medium/Flow_meter_close_up.jpg)](https://i.publiclab.org/system/images/photos/000/009/296/original/Flow_meter_close_up.jpg) **Building the phytoremediation tool:** See the research note [here](http://publiclab.org/notes/nshapiro/10-20-2014/diy-indoor-air-quality-remediation) Contribute to the wiki [here](http://publiclab.org/wiki/diy-indoor-air-quality-remediation-kit) [![Boone_Workshop.JPG](https://i.publiclab.org/system/images/photos/000/009/297/medium/Boone_Workshop.JPG)](https://i.publiclab.org/system/images/photos/000/009/297/original/Boone_Workshop.JPG) **Why domestic air quality?** Despite the long held observation that indoor chemical concentrations are generally higher than corresponding outdoor concentrations and that Americans spend ninety percent of their time indoors, the home is the last environmentally unregulated airspace in the United States. As both a major seat of exposure and regulatory void, indoor air quality is ripe for research-to-action interventions. Further, domestic exposures are often tied to racial and socioeconomic health disparities, making indoor air quality an environmental justice issue as much as it is a public health issue. **Why formaldehyde?** Formaldehyde is the most common and most toxicologically understood indoor air pollutant. This chemical vapor is a gateway to understanding commonplace domestic exposures. It is used as a setting agent, binding together particle board walls, subfloors, hardboard cabinetry and adhering carpets to their backing. As a result of its prevalent use in home construction, formaldehyde is a dominant contributor to cancer risk from the indoor environment and gives rise to a broad range respiratory, dermatological and neurological pathologies. **Why manufactured housing?** _Disproportionate exposure_ Although understudied, research indicates that formaldehyde levels in manufactured homes are on average four times higher than those of conventional homes. These high chemical concentrations in manufactured housing are due to the high use of engineered woods that utilize formaldehyde as a binding agent, the high ratio of exterior walls to indoor airspace and minimal _Large, understudied and underserved population_ Manufactured housing is the largest source of non-subsidized affordable housing in the United States. While the exact number of manufactured housing occupants is unknown, it its commonly estimated that 20 million lower and moderate-income Americans currently reside in manufactured housing. Manufactured homes have an outsized share of the low cost housing market, representing 1 in 6 owner-occupied housing units with costs less than $500 per month. The median net worth of households that live in manufactured housing is one-quarter of the median net worth of other households. _Chemical awareness without resources_ Formaldehyde has been a notorious issue among manufactured housing communities for over 30 years. Recent investigative reporting such as the[ 60 Minutes exposé](http://www.google.com/url?q=http%3A%2F%2Fwww.cbsnews.com%2Fnews%2Flumber-liquidators-linked-to-health-and-safety-violations%2F&sa=D&sntz=1&usg=AFQjCNEXjl9DW1m3Sz_g-mn055LITuN9hg) on the high rates of formaldehyde emanating from Lumber Liquidators laminate flooring have raised public concern about this chemical. This longstanding problem in conjunction with recent media attention have sparked a great deal of interest in and demand for formaldehyde test kits among manufactured housing inhabitants, yet these are precisely the groups that cannot afford testing and are not networked in a way that can build strong toxic tort cases which can lead the way towards industry and regulatory reform. **Works Cited** Gonzalez-Flesca, Norbert, André Cicolella, Matthew Bates, and Emmanuelle Bastin. 1999. “Pilot Study of Personal, Indoor and Outdoor Exposure to Benzene, Formaldehyde and Acetaldehyde.” Environmental Science and Pollution Research 6 (2): 95–102. Khoder, M I, A A Shakour, S A Farag, and A A Abdel Hameed. 2000. “Indoor and Outdoor Formaldehyde Concentrations in Homes in Residential Areas in Greater Cairo.” Journal of Environmental Monitoring 2 (2): 123–26. Leech, Judith A., William C. Nelson, Richard T. Burnett, Shawn Aaron, and Mark E. Raizenne. 2002. “It’s about Time: A Comparison of Canadian and American Time-Activity Patterns.” Journal of Exposure Analysis and Environmental Epidemiology 12 (6): 427–32. Accessed August 20. Adamkiewicz, Gary, Ami R. Zota, M. Patricia Fabian, Teresa Chahine, Rhona Julien, John D. Spengler, and Jonathan I. Levy. 2011. “Moving Environmental Justice Indoors: Understanding Structural Influences on Residential Exposure Patterns in Low-Income Communities.” American Journal of Public Health 101 (Suppl 1): S238–45. Salthammer, Tunga, Sibel Mentese, and Rainer Marutzky. 2010. “Formaldehyde in the Indoor Environment.” Chemical Reviews 110 (4): 2536–72. Hun, Diana E., Jeffrey A. Siegel, Maria T. Morandi, Thomas H. Stock, and Richard L. Corsi. 2009. “Cancer Risk Disparities between Hispanic and Non-Hispanic White Populations: The Role of Exposure to Indoor Air Pollution.” Environmental Health Perspectives 117 (12): 1925–31. McGwin, Gerald, Jeffrey Lienert, and John I. Kennedy. 2009. “Formaldehyde Exposure and Asthma in Children: A Systematic Review.” Environmental Health Perspectives 118 (3): 313–17. Kilburn, Kaye H. 1994. “Neurobehavioral Impairment and Seizures from Formaldehyde.” Archives of Environmental Health: An International Journal 49 (1): 37–44. CA OEHHA. 2001. Prioritization of Toxic Air Contaminants-- Formaldehyde. Children’s Environmental Health Protection Act. California Office of Environmental Health Hazard Assessment. __________________________________________________________________________________________ **Looking for the older Roomba-based work?** This project has been moved to a new wiki: http://publiclab.org/wiki/roomba-air-quality-monitoring